Dramatically elevated rate of mitochondrial substitution in lice (Insecta: Phthiraptera).
نویسندگان
چکیده
Few estimates of relative substitution rates, and the underlying mutation rates, exist between mitochondrial and nuclear genes in insects. Previous estimates for insects indicate a 2-9 times faster substitution rate in mitochondrial genes relative to nuclear genes. Here we use novel methods for estimating relative rates of substitution, which incorporate multiple substitutions, and apply these methods to a group of insects (lice, Order: Phthiraptera). First, we use a modification of copath analysis (branch length regression) to construct independent comparisons of rates, consisting of each branch in a phylogenetic tree. The branch length comparisons use maximum likelihood models to correct for multiple substitution. In addition, we estimate codon-specific rates under maximum likelihood for the different genes and compare these values. Estimates of the relative synonymous substitution rates between a mitochondrial (COI) and nuclear (EF-1alpha) gene in lice indicate a relative rate of several 100 to 1. This rapid relative mitochondrial rate (>100 times) is at least an order of magnitude faster than previous estimates for any group of organisms. Comparisons using the same methods for another group of insects (aphids) reveals that this extreme relative rate estimate is not simply attributable to the methods we used, because estimates from aphids are substantially lower. Taxon sampling affects the relative rate estimate, with comparisons involving more closely related taxa resulting in a higher estimate. Relative rate estimates also increase with model complexity, indicating that methods accounting for more multiple substitution estimate higher relative rates.
منابع مشابه
Extraordinary number of gene rearrangements in the mitochondrial genomes of lice (Phthiraptera: Insecta).
The arrangement of genes in the mitochondrial (mt) genomes of most insects is the same, or near-identical, to that inferred to be ancestral for insects. We sequenced the entire mt genome of the small pigeon louse, Campanulotes bidentatus compar, and part of the mt genomes of nine other species of lice. These species were from six families and the three main suborders of the order Phthiraptera. ...
متن کاملLouse (Insecta: Phthiraptera) mitochondrial 12S rRNA secondary structure is highly variable.
Lice are ectoparasitic insects hosted by birds and mammals. Mitochondrial 12S rRNA sequences obtained from lice show considerable length variation and are very difficult to align. We show that the louse 12S rRNA domain III secondary structure displays considerable variation compared to other insects, in both the shape and number of stems and loops. Phylogenetic trees constructed from tree edit ...
متن کاملHigher-level phylogeny of paraneopteran insects inferred from mitochondrial genome sequences
Mitochondrial (mt) genome data have been proven to be informative for animal phylogenetic studies but may also suffer from systematic errors, due to the effects of accelerated substitution rate and compositional heterogeneity. We analyzed the mt genomes of 25 insect species from the four paraneopteran orders, aiming to better understand how accelerated substitution rate and compositional hetero...
متن کاملWhen do parasites fail to speciate in response to host speciation?
Cospeciation generally increases the similarity between host and parasite phylogenies. Incongruence between host and parasite phylogenies has previously been explained in terms of host switching, sorting, and duplication events. Here, we describe an additional process, failure of the parasite to speciate in response to host speciation, that may be important in some host-parasite systems. Failur...
متن کاملMultiple genes and the monophyly of Ischnocera (Insecta: Phthiraptera).
Whereas most traditional classifications identify Ischnocera as a major suborder of lice in the order Phthiraptera, a recent molecular study based on one gene did not recover monophyly of Ischnocera. In this study we test the monophyly of Ischnocera using sequences of portions of three different genes: two nuclear (EF1 alpha and 18S) and one mitochondrial (COI). Analysis of EF1 alpha and COI se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular phylogenetics and evolution
دوره 26 2 شماره
صفحات -
تاریخ انتشار 2003